Ben Thorne

■ ben0x1@icloud.com

in b-thorne

• ben.kfq.io

San Francisco, CA

EXPERIENCE

Senior Machine Learning Engineer

2023 - present

Atomic Industries

Remote / San Francisco, CA

Physics-based automated design of plastic injection molds

Julia · Python

- · Led the end-to-end design and implementation of an internal tool for automated cooling circuit design in injection molds, combining advanced physics, computational geometry, and optimization.
- · Sole architect of the tool; designed core data structures, parallel computing architecture, and simulation pipelines in Julia. These included:
 - A custom solver for elliptic PDEs, enabling scalable thermal simulation in highly detailed 3D geometries.
 - A geometry package for 3D spatial queries and acceleration structures, used to evaluate physical constraints and manufacturability in real time.
 - A distributed evolutionary algorithm framework tailored to the discrete, constrained nature of the design space.
- · Acted as technical lead for a small team, setting direction, running sprint planning, and reviewing code.
- · Collaborated closely with manufacturing engineers to validate simulation outputs against physical behavior, and worked with product leadership to support customer PoCs and Series A fundraising with design outputs.

Machine Learning Engineer

2023

National Energy Research Scientific Computing Center (NERSC), Berkeley Lab

Berkeley, CA

Machine learning benchmarks for high-energy physics (NeurIPS'24) [PDF] [Project Page]

Python · PyTorch

- · Coordinated the FAIR Universe project: a cross-institutional collaboration of 10+ scientists and engineers from Berkeley Lab, University of Washington, Paris-Saclay, and ChaLearn to build a ML challenge platform for scientific computing.
- Contributed to the design of uncertainty-aware ML benchmarks and scoring metrics for high-energy physics datasets, shaping the first public challenge launched at NeurIPS 2024.
- · Worked closely with engineers at NERSC to support the deployment of containerized ML payloads on the Perlmutter supercomputer, using Kubernetes and Rancher for orchestration.

Postdoctoral Researcher

2019 - 2022

University of California, Davis

Davis, CA

Generative modeling of astronomical images using VAEs in PyTorch [PDF] [GitHub]

Python · pytorch

- · Curated novel training dataset of 1,000 images of the interstellar medium from public data.
- · Designed and trained convolutional variational autoencoder in PyTorch.
- Applied trained model to Bayesian inverse problems: data imputation, denoising, inference.

Differentiable physical models for cosmology with CUDA and auto-diff [PDF]

Julia · CUDA

- · Developed automatically-differentiable foreground model extension to CMBLensing.il.
- · Implemented GPU-acceleration with CUDA.jl.
- · Developed sparse approximations & preconditioners to speed up log likelihood evaluation by $\sim 100 \times$.
- · Distributed Bayesian inference pipeline across 10's of A100 GPU nodes on Perlmutter.
- Used to analyze 10^6 -pixel 3-channel images from BICEP/Keck-South Pole Telescope joint analysis.

Python Sky Model [PDF] [GitHub] [Project Page]

- Python · numba
- · Original author of the Python Sky Model package, *pysm*, for simulating microwave sky maps. This package has become the de facto standard for simulating cosmic microwave background surveys, with over 300 citations.
- · Uses numba and MPI for execution in high-performance computing environments.
- · Frequently runs across 100's of nodes at NERSC in large-scale simulation campaigns for the Simons Observatory and Stage-IV experiments.
- Due to widespread community reliance on the package, since 2020 it has been maintained and developed by the Pan-Experiment Galactic Science Group, an academic consortium.

Other duties

- · Co-organized the weekly cosmology seminar from January 2020 to December 2022.
- · Co-supervised PhD students on various projects in machine learning and physics.
- · Regularly delivered seminars and conference talks.

EDUCATION

PhD in Astrophysics

2015 - 2019

University of Oxford, Princeton University & Kavli IPMU

Oxford, Princeton, Tokyo

Supervisors: Prof. Jo Dunkley (Princeton & Oxford), Prof. Nobuhiko Katayama (Kavli IPMU, University of Tokyo)

Performance forecasts for the Simons Observatory (SO) [PDF₁] [PDF₂] [GitHub]

Python · C

- · Wrote maximum likelihood estimation algorithm for pixelized satellite data using Numba.
- · Performed Monte Carlo simulations to forecast constraints on primordial gravitational waves from SO data.

Data analysis for the Atacama Cosmology Telescope [PDF]

Python · numba

Computed Bayesian priors for 2018 likelihood analysis by calculating and fitting power spectra of public sky maps.

Axion-SU(2) inflation and chiral gravitational waves [PDF] [GitHub]

Python · C

- Developed analytical and numerical predictions for chiral primordial gravitational wave signals in parity-violating cosmologies.
- · Modified C code, CLASS, to compute parity-violating CMB signatures, and quantified the sensitivies of the upcoming laser interferometer and CMB satellites LISA and LiteBIRD to the derived signals.
- · Resulted in a high-impact paper (100+ citations).

M.S. & B.S. in Physics, first class honours (4.0 GPA)

2011 - 2015

University of Oxford, New College

Oxford, UK

Photometric decomposition of barred and double-barred galaxies [PDF]

Python · IDL

- · Collected dataset of galaxy images from the Sloan Digital Sky Survey.
- · Decomposed galaxy images into components using least-squares fitting, constraining bar and spiral structure.

SKILLS

Python: pytorch, jax, scipy, dask, mpi4py, numba, numpy Julia: CUDA.jl, StaticArrays.jl, Distributed.jl, Flux.jl, Zygote.jl

C: MPI, CLASS

Other: Docker, Nomad, Git, DVC, AWS [S3, EC2], Quarto, Javascript, Slurm, MPI